
 The RC6 Block Cipher:
 A simple fast secure
 AES proposal

Ronald L. Rivest MIT
Matt Robshaw RSA Labs
Ray Sidney RSA Labs
Yiqun Lisa Yin RSA Labs

 (August 21, 1998)

Outline
u Design Philosophy
u Description of RC6
u Implementation Results
u Security
u Conclusion

Design Philosophy
u Leverage our experience with RC5: use

data-dependent rotations to achieve a
high level of security.

u Adapt RC5 to meet AES requirements
u Take advantage of a new primitive for

increased security and efficiency:
32x32 multiplication, which executes
quickly on modern processors, to
compute rotation amounts.

Description of RC6

Description of RC6
u RC6-w/r/b parameters:

– Word size in bits: w (32)(lg(w) = 5)
– Number of rounds: r (20)
– Number of key bytes: b (16, 24, or 32)

u Key Expansion:
– Produces array S[0 … 2r + 3] of w-bit

round keys.
u Encryption and Decryption:

– Input/Output in 32-bit registers A,B,C,D

RC6 Primitive Operations
A + B Addition modulo 2w

A - B Subtraction modulo 2w

A ⊕ B Exclusive-Or
A <<< B Rotate A left by amount in

 low-order lg(w) bits of B
A >>> B Rotate A right, similarly
(A,B,C,D) = (B,C,D,A) Parallel assignment
A x B Multiplication modulo 2w

RC
5

RC6 Encryption (Generic)
 B = B + S[0]

D = D + S[1]
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< lg(w)
 u = (D x (2D + 1)) <<< lg(w)
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[2r + 2]
C = C + S[2r + 3]

RC6 Encryption (for AES)
 B = B + S[0]

D = D + S[1]
for i = 1 to 20 do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[42]
C = C + S[43]

RC6 Decryption (for AES)
 C = C - S[43]

A = A - S[42]
for i = 20 downto 1 do
 {
 (A, B, C, D) = (D, A, B, C)
 u = (D x (2D + 1)) <<< 5
 t = (B x (2B + 1)) <<< 5
 C = ((C - S[2i + 1]) >>> t) ⊕ u
 A = ((A - S[2i]) >>> u) ⊕ t
 }
 D = D - S[1]
 B = B - S[0]

Key Expansion (Same as RC5’s)
u Input: array L[0 … c-1] of input key words
u Output: array S[0 … 43] of round key words
u Procedure:

S[0] = 0xB7E15163
for i = 1 to 43 do S[i] = S[i-1] + 0x9E3779B9
A = B = i = j = 0
for s = 1 to 132 do
 { A = S[i] = (S[i] + A + B) <<< 3
 B = L[j] = (L[j] + A + B) <<< (A + B)
 i = (i + 1) mod 44
 j = (j + 1) mod c }

From RC5 to RC6
 in seven easy steps

(1) Start with RC5
 RC5 encryption inner loop:
 for i = 1 to r do

 {
 A = ((A ⊕ B) <<< B) + S[i]
 (A, B) = (B, A)
 }

Can RC5 be strengthened by having rotation
amounts depend on all the bits of B?

u Modulo function?
Use low-order bits of (B mod d)
Too slow!

u Linear function?
Use high-order bits of (c x B)
Hard to pick c well!

u Quadratic function?
Use high-order bits of (B x (2B+1))
Just right!

Better rotation amounts?

B x (2B+1) is one-to-one mod 2w

Proof: By contradiction. If B ≠ C but
B x (2B + 1) = C x (2C + 1) (mod 2w)

then
 (B - C) x (2B+2C+1) = 0 (mod 2w)
But (B-C) is nonzero and (2B+2C+1) is
odd; their product can’t be zero! o

Corollary:
B uniform à B x (2B+1) uniform
(and high-order bits are uniform too!)

High-order bits of B x (2B+1)
u The high-order bits of

f(B) = B x (2B + 1) = 2B2 + B
 depend on all the bits of B .

u Let B = B31B30B29 … B1B0 in binary.
u Flipping bit i of input B

– Leaves bits 0 … i-1 of f(B) unchanged,
– Flips bit i of f(B) with probability one,
– Flips bit j of f(B) , for j > i , with

probability approximately 1/2 (1/4…1),
– is likely to change some high-order bit.

 for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 A = ((A ⊕ B) <<< t) + S[i]
 (A, B) = (B, A)
 }

But now much of the output of this nice
multiplication is being wasted...

(2) Quadratic Rotation Amounts

 for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 A = ((A ⊕ t) <<< t) + S[i]
 (A, B) = (B, A)
 }

Now AES requires 128-bit blocks.
We could use two 64-bit registers, but
64-bit operations are poorly supported
with typical C compilers...

(3) Use t, not B, as xor input

(4) Do two RC5’s in parallel
 Use four 32-bit regs (A,B,C,D), and do

RC5 on (C,D) in parallel with RC5 on (A,B):
 for i = 1 to r do

 {
 t = (B x (2B + 1)) <<< 5
 A = ((A ⊕ t) <<< t) + S[2i]
 (A, B) = (B, A)
 u = (D x (2D + 1)) <<< 5
 C = ((C ⊕ u) <<< u) + S[2i + 1]

 (C, D) = (D, C)
 }

(5) Mix up data between copies
 Switch rotation amounts between copies,

and cyclically permute registers instead of
swapping:
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }

One Round of RC6

55

ff

A B C D

<<<<<<

<<< <<<

S[2i] S[2i+1]

A B C D

t u

(6) Add Pre- and Post-Whitening
 B = B + S[0]

D = D + S[1]
for i = 1 to r do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[2r + 2]
C = C + S[2r + 3]

 B = B + S[0]
D = D + S[1]
for i = 1 to 20 do
 {
 t = (B x (2B + 1)) <<< 5
 u = (D x (2D + 1)) <<< 5
 A = ((A ⊕ t) <<< u) + S[2i]
 C = ((C ⊕ u) <<< t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
 }
A = A + S[42]
C = C + S[43]

(7) Set r = 20 for high security

Final RC6

(based on analysis)

RC6 Implementation Results

Less than two clocks per bit of plaintext !

Java Borland C Assembly

Setup 110000 2300 1108

Encrypt 16200 616 254

Decrypt 16500 566 254

CPU Cycles / Operation

Java Borland C Assembly

Setup 1820 86956 180500

Encrypt 12300 325000 787000

Decrypt 12100 353000 788000

Operations/Second (200MHz)

Java Borland C Assembly

Encrypt 0.197
1.57

5.19
41.5

12.6
100.8

Decrypt 0.194
1.55

5.65
45.2

12.6
100.8

Encryption Rate (200MHz)
MegaBytes / second
MegaBits / second

Over 100 Megabits / second !

On an 8-bit processor
u On an Intel MCS51 (1 Mhz clock)
u Encrypt/decrypt at 9.2 Kbits/second

(13535 cycles/block;
 from actual implementation)

u Key setup in 27 milliseconds
u Only 176 bytes needed for table of

round keys.
u Fits on smart card (< 256 bytes RAM).

Custom RC6 IC
u 0.25 micron CMOS process
u One round/clock at 200 MHz
u Conventional multiplier designs
u 0.05 mm2 of silicon
u 21 milliwatts of power
u Encrypt/decrypt at 1.3 Gbits/second
u With pipelining, can go faster, at cost

of more area and power

RC6 Security Analysis

Analysis procedures
u Intensive analysis, based on most

effective known attacks (e.g. linear
and differential cryptanalysis)

u Analyze not only RC6, but also several
“simplified” forms (e.g. with no
quadratic function, no fixed rotation
by 5 bits, etc…)

Linear analysis
u Find approximations for r-2 rounds.
u Two ways to approximate A = B <<< C

– with one bit each of A, B, C (type I)
– with one bit each of A, B only (type II)
– each have bias 1/64; type I more useful

u Non-zero bias across f(B) only when
input bit = output bit. (Best for lsb.)

u Also include effects of multiple linear
approximations and linear hulls.

Estimate of number of plaintext/ciphertext
pairs required to mount a linear attack.

(Only 2128 such pairs are available.)

Rounds Pairs
 8 247

 12 283

 16 2119

 20 RC6 2155

 24 2191

Security against linear attacks

Infeasible

Differential analysis
u Considers use of (iterative and non-

iterative) (r-2)-round differentials as
well as (r-2)-round characteristics.

u Considers two notions of “difference”:
– exclusive-or
– subtraction (better!)

u Combination of quadratic function and
fixed rotation by 5 bits very good at
thwarting differential attacks.

An iterative RC6 differential
u A B C D

 1<<16 1<<11 0 0
 1<<11 0 0 0
 0 0 0 1<<s
 0 1<<26 1<<s 0
 1<<26 1<<21 0 1<<v
 1<<21 1<<16 1<<v 0
 1<<16 1<<11 0 0

u Probability = 2-91

Estimate of number of plaintext pairs
required to mount a differential attack.

(Only 2128 such pairs are available.)

Rounds Pairs
 8 256

 12 2117

 16 2190

 20 RC6 2238

 24 2299

Security against
 differential attacks

Infeasible

Security of Key Expansion
u Key expansion is identical to that of

RC5; no known weaknesses.
u No known weak keys.
u No known related-key attacks.
u Round keys appear to be a “random”

function of the supplied key.
u Bonus: key expansion is quite “one-

way”---difficult to infer supplied key
from round keys.

Conclusion
u RC6 more than meets the

requirements for the AES; it is
– simple,
– fast, and
– secure.

u For more information, including copy
of these slides, copy of RC6
description, and security analysis, see
 www.rsa.com/rsalabs/aes

 (The End)

